Spurenanalytik organischer Verbindungen

Prof. Dr. Thorsten Hoffmann

Anorganische und Analytische Chemie Universität Mainz

Wintersemester 2018/19

Inhalt

Einleitung	2
Probenahme	7
Trenntechniken	33
Allgemeines	33
GC	40
LC	67
Elektrohoretische Trenntechniken	107
Massenspektrometrie	131
Einleitung & Ionisationstechniken	131
Massenspektrometrische Analysatoren	198

Einleitung

Einsatzgebiete organischer Analysenmethoden

Umweltanalytik

- Luft (z.B. Abgasanalytik, luftgetragene organische Schadstoffe)
- Wasser (z.B. Wasserqualität, Herbizide, Pestizide)
- Böden (z.B. Mineralöle, Entsorgung und Aufarbeitung belasteter Böden)

Prozesskontrolle und Prozessregelung

- Großtechnische Destillationen
- Extraktionen

•

Qualitätskontrolle (z.B. Reinheit von Gasen, Chemikalien, Medikamente....)

Pharmakologische / toxikologische / forensische Analytik

- Drogennachweis (z.B. Cannabis, Cocain, Methadon)
 z. B. in Haaren, Urin, Serum
- Dopingnachweis (z.B. Anabolika, THG)
- klinische Proben (z.B. Glucose in Blut)

Lebensmittelanalytik

- polychlorierte Biphenyle in Milch
- Trinkwasseranalytik (Herbizide)

Bioanalytik

- DNA-Sequenzierung
- Proteomics
- Metabolomics

Pro	benvorbereitung
z.B.	Aufschlüsse, Aufkonzentrierung, Extraktionen, Vortrennungen (clean up)
Qua	antifizierung
Abs (An	solut- oder Primärmethoden alytmenge direkt proportional einer physikalischen Größe)
• (• \ •	Gewicht – Gravimetrie Volumen – Volumetrie Ladungsmenge – Coulometrie
Rela	ativmethoden
• (Quantifizierung bezüglich auf eingesetzte Standards (Kalibrierung)
"def	înitive" Methoden (i.a. matrixunabhängig)
•	Isotopenverdünnungs-Massenspektrometrie Neutronenaktivierungsanalyse

des Adsorb geringe Aff hohe therm keinen Beit	zität (none Probenannie ients) inität zu Wasser (Luftfeu nische Stabilität (Möglich trag zum Untergrund (Bl	uchtigkeit) hkeit zur th indwerte)	n (spezilische (esorption)
Handelsname	Grundgerüst	Temperatur- stabilität [°C]	Spezifische Oberfläche [m²/g]	Eignung
Kieselgel	Kieselsäure	300	1-30	m
Aluminiumoxid	Aktiviertes Aluminiumoxid	300	300	m
Aktivkohle	Kohlenstoff aus Kokosnussschale	> 400	800	l, m
Carbopack B	graphitisierter Kohlenstoff	300	100	m
Carbosieve SIII	graphitisierter Kohlenstoff	225	1000	l, m
Tenax TA	2,6-Diphenyl-p-phenylenoxid	250	20-40	m
Porapak Q	Diphenylbenzen - Ethylvinylbenzen	250	700	m
	Styrol-Divinylbenzen	250	350	m .
Chromosorb 102	orgitor bitinghoonLon			

$k = \frac{c_s}{c_g} = \frac{Konzentration in Wasser}{Konzentration in der Gasphase}$	(1)
Verteilungskoeffizient <i>k (partitio</i> Temperatur	n coefficient) ist abhängig von der
$c_s = k \cdot c_g$	(2)
⇒ da Peakfläche A proportiona der Gasphase folgt:	I zur Konzentration des Stoffes in
$A \approx c_{g} = \frac{1}{k} \cdot c_{s}$	(3)
\Rightarrow um auf die Konzentration c $_0$ schließen zu können, wird vom	in der ursprünglichen Probe zurück- Gleichgewicht der Massen ausgegangen:
	Wing mit $M_1 - c_1 V_2$, $M_2 - c_2 V_3$
$M_0 = M_{\rm S} + M_{\rm G}$ nach GG-Einste und $M_{\rm G} = c_{\rm G} V_{\rm G}$	$\frac{1}{100} - \frac{1}{100} - \frac{1}$

Durch Verwendung von GI. (2) kann die unbekannte Größe $c_{\rm S}$ durch $k \cdot c_G$ ersetzt werden:

(6)

$$c_{0} \cdot V_{0} = k \cdot c_{c} \cdot V_{s} + c_{c} \cdot V_{c}$$

$$c_{0} = c_{c} \cdot \frac{V_{s}}{V_{0}} \cdot \left(k + \frac{V_{c}}{V_{c}}\right)$$
(6)

Die Ausgangskonzentration c_0 einer Probe ergibt sich mit $V_0 = V_S$:

$$c_0 = c_G \cdot \left(k + \frac{V_G}{V_S}\right) \tag{7}$$

Da die ermittelte Peakfläche A der Konzentration des flüchtigen Stoffes in der Gasphase c_G proportional ist (Gl. 3) gilt entsprechend:

$$c_0 \approx A \cdot (k + \beta)$$
 wobei $\beta = V_G / V_S$ (8)

β Phasenverhältnis (phase ratio)

Die Einflüsse auf die Empfindlichkeit einer statischen Headspace-Analyse können nun leicht aus der Proportionalität der Gleichung 8 abgeleitet werden:

$$A \approx c_0 \cdot \frac{1}{k+\beta} \tag{9}$$

			-				
PX-LC/MS/MS Dru	a Scree	nina	Compound	(min) TR	Presoursor Ion (m/z)	Product Ion (m/z)	Recovery [%]
	-9 00.00.		Codeine Hydrocodone	2,297 2,446	300,2 300,2	152,0 199,0	96 113
formated extraction and determination of 40 drugs	LC-Conditions		Hydromorphone	1,881	286,2	185,0	74
ume using automated DPX-LC/MS/MS. Samples	Injection Volume:	25 H	Morphine	1,426	286,2	152,1	72
276 µL hydrolyzed urine spiked with drugs were	Mobile Phase:	A: 5 mM ammonium formate	d3-morphise	1,414	289,2	152,1	100
ted with 500 µL acetonitrile, vortexed and trans-		with 0.05% formic acid	Oxymorphone	1,620	302,2	227,1	73
red to a DPX-SC tip. After automated DPX the		B: Methanol with 0.05% formic	Buprenorphine	4,131	468,4	454,0	59
mple was evaporated and reconstituted using		acid	Fentanyl	3,691	337,2	188,2	59
0 ull of methanol / 0.05% formic acid (1:1 wV).	Gradient:	Initial 95% A/5% B	dS-Fentanyl Mathematics	3,680	342,3	188,5	100
e protest was performed using an Aniert		0.5min 95% A/5% B	Norbuprenorphine	3,631	414,3	187,0	68
00 HBIC with a Zorbay Eclines Diss onlymn		15min 70% A/30% B	Norfentanyl	3,046	233,1	150,1	79
C19 2 1-100 mm 1 8 m and an Animat 6110		25 min 20 % A 270 % D	a-OH-alprazolam	4,453	309.0	297,0	117
Polio, 2.1ktoomm, 1.6 pm and an Aglent of to		AD THE AD THE ADDRESS OF THE	Clonazepart	4,228	316.0	270.0	121
neurosa mana operationene (cos, opresido minor,		4.01181 0 76 A / 30 76 B	Funitrazepam	4,283	314.0	268.0	123
stive mode).		6.5 min 5% A/96% B	Lorazepam	4,447	321,0	275,0	150
	and the	7.5 min 95% A/5% B	Norfizzepam	4,243	282,0	236.0	101
	Flow Plate:	500 µL / min	d5-nordiazepam	4,674	276,0	213,0	100
			Chazepam	4,664	287,0	259,0	142
			o-desmethyltramadol	3,283	250,1	189,1	65
	1		Norpropoxyphene	4,251	326.2	252,1	70
			d5-propoxyphene	4,210	345,3	271,2	100
	1		Tramadol	3,164	264,2	58,0	70
			d7-Carisoprodol	4,490	268.2	183,1	100
			Gabapentin Mecrohamate	2,504	172,1	154,0	61 73
			PCP	3,620	244.3	91,2	71
			dS-PCP COOH-THC	3,609	249,3	164.3	100
			Amphetamine	2,583	136,2	91,1	60
			d5-Amphetamine	2.573	141,1	03,0	100
			Cotaine	3,151	304.2	182,1	145
			MDA	2,580	180,0	163,3	79
Federadas 11-101 1 HOUST FORMAR PANTA SOL	A CONTRACTOR	ADDERHORN I	MDMA	2,643	194,0	163.0	85
the second se			8 Kath smithet smithe	20.02	160.2	81.1	46

Substanz	kritische Temperatur	kritischer Druck [MPa]		
	[°C]			
Xe	16.6	5.83		
CHF ₃	25.9	4.83		
CCIF ₃	28.8	3.92		
CO ₂	31.1	7.37		
$N_2 \overline{O}$	36.4	7.24		
NH ₃	132.2	11.27		
CH ₃ OH	239.4	8.09		
H ₂ Ŏ	374.1	22.04		

Tab. Kritische Daten ausgewählter Substanzen

- CO₂ ist das am häufigsten verwendete überkritische Fluid (relativ niedrige kritische Temperatur (Extraktion thermolabiler Substanzen (Steroide)), chemisch inert, geringe Toxizität, hohe Reinheit, niedrige Kosten)
- durch Druck- und Temperatursteuerung kann das Lösungsvermögen beeinflusst werden: niedriger Druck: begünstigt Extraktion unpolarer Analyten, höherer Druck ⇒ höheres Lösungsvermögen auch für polare Substanzen (aber niedrigerer Diff.-Koeff. (Zeit))

$$\alpha = \frac{k'(C)}{k'(B)} = \frac{t'(C)}{t'(B)}$$

 \Rightarrow definitonsgemäß ist α immer größer oder gleich 1

- ⇒ bei α = 1 eluieren beide Substanzen gleichzeitig (Coelution) ⇒ keine Trennung
- Phasenverhältnis ß \Rightarrow Volumenverhältnis zwischen mobiler (V_m) und stationärer Phase (V_s)

$$\beta = V_m / V_s$$

Trenntechniken Gaschromatographie

innerer Durch- messer [mm]	HETP [mm]	<i>N_{th}</i> [m ⁻¹]	typische Flussraten (H ₂) [ml/min]	Proben- kapazität pro Substanz
0.1	0.1	10000	0.2-0.5	< 1 ng
0.18	0.18	5556	0.4-1.0	
0.22	0.22	4545	0.8-2.0	
0.32	0.32	3125	1.7-4.0	
0.53 "wide bore"	0.53	1887	3-50	> 200 ng

 \Rightarrow

größere i.D. (*"wide bore"*) haben zwar nur niedrige Trennstufenzahlen, erlauben aber höhere Flussraten und größere Substanzmengen individuelle Auswahl für jedes Trennproblem (*"*Standardsäulen*"*: 0.22 oder 0.32 mm i.D., 1 µm Filmdicke, 25-50 m Länge) \Rightarrow

Stationäre Phasen für Dünnfilmsäulen ⇒ Duzende von unterschiedlichen stationären Phasen Anforderungen an stationäre Phasen thermische Stabilität (Temperaturen bis zu 400°C) geringer Dampfdruck (geringes "Säulenbluten") geringe Viskosität (schneller Massentransfer) gute Absorptionseigenschaften für die zu trennenden Substanzen

⇒ Angabe der McReynolds-Konstanten der 5 "Modellsubstanzen" (Benzol, Butanol, 2-Pentanon, Nitropropan und Pyridin) von den Herstellern von GC-Säulen ⇒ Auswahlhilfe für stationäre Phasen

	Probes*					Temp. Limits	
Stationary Phase	Benz	Alc	Ket	N-Pr	Pyrid	Lower	Upper
Squalane	0	0	0	0	0	20	125
Apolane 87®	21	10	3	12	25	20	260
OV-1®	16	55	44	65	42	100	375
OV-101®	17 41 119 176 144	57 83 158 321 233	45 117 162 250 355	67 154 243 374 463	43 126 202 299 305	20 50 20 20 0	375 450 375 125 250
Dexsil 300 [®]							
OV-17®							
Tricresylphosphate							
QF-1							
OV-2028 and OV-2108	146	238	358	468	310	0	275
OV-225®	228	369	338	492	386	20	300
Carbowax 20M®	322	536	368	572	510	60	225
DEGS	492	733	581	833	791	20	200
OV-275®	629	872	763	1106	849	20	275
* Benz = Benzene Alc = <i>n</i> -Butanol Ket = 2-Pentanone N-Pr = Nitropropane Pyrid = Pyridine							

Gaschromatographischer Detektor	Kurzbezeichnung	Komponenten
Wärmeleitfähigkeitsdetekto	or WLD	z.B. Permanentgase
Flammenionisationsdetekto	or FID	Kohlenwasserstoffe
Stickstoff-Phosphor-Detekt	or FID-NP	N- und P-haltige Verbindungen
Elektoneneinfangdetektor	ECD	halogenhaltige Substanzen
Photoionisationsdetektor	PID	Aromaten, Alkene
Infrarotdetektor	IR	z.B. sauerstoffhaltige Verbindungen
Massenspektometer	MS	universell

Informationen in elektrische Signale umwandeln

Selektivität

Ansprechverhalten des Detektors auf unterschiedliche Verbindungen (z.B. elementselektiv, selektiv für funktionelle gruppen (z.B.Carbonylfunktion))

Zeitauflösung

Zeitliches Ansprechverhalten des Detektors (Messfrequenz)

Konzentrationsabhängige Detektoren: Signalhöhe hängt nicht nur von der Masse an Substanz im \Rightarrow Detektor ab, sondern auch von dem betreffenden Volumen an Trägergas im Detektor (z.B. WLD, ECD, IR) Massenabhängige Detektoren: Höhe des Signals hängt nur von der absoluten Masse des \Rightarrow Analyten ab (FID, MS) $S = f_{\scriptscriptstyle E} \cdot \frac{m}{V}$ $S = f_E \cdot m$ konzentrationsabhängig massenabhängig Signalhöhe Empfindlichkeit S f_E Masse an Komponente Volumen Vт

D	erivatisierung
⇒	 Prozess zur chemischen Modifizierung der Analyten mit dem Ziel diese gaschromatographisch trenn- und detektierbar zu machen:
⇒	 Erhöhung der Flüchtigkeit (z.B. Carbonsäuren, Zucker)
⇒	 Verbesserung des chromatographischen Verhaltens oder der Detektierbarkeit (insbesondere für ECD)
Si ⇒	trategie zur Erhöhung der Flüchtigkeit: Eliminierung von polaren OH, NH und SH-Gruppen

e 2. Derivatizatio	on Reagents for Spe	cific Functional Groups			
unctional Group	Procedure	Respont	Derivative	Notes	
and an and an and	Silviation	15A	TMS Amidea	Difficult to form due to steric hindrance	
Amides	and many	RSTFA	TMS Amidet	Property in the second independent	
0		BRITEA, TMCS	TMS Amades	TMCS used as a cutatest	
ü		MISTEA	TMS Amides	Reaction bytroducts more volatile	
-C-NH,		MSTEA, TMCS	TMS Amides	Comments of the second states of the second	
Primary		Tri-Sill' Rastanta	TMS Amides		
1		ATTENTA	TRUBACS Accudes	Difficult to form: same stable	
		ATTRETEA, TROATE	TODATC Aminte	TROAT'S aids dation and a	
0	Ro. Ballan	MIDDIFATIOUNCO	Tothe second sec	TBURNUS MON OFFICIATION	
-C-NHR	veyation	TTAA	Total and the second sec		
B		17AA	Transoroaceumides	2-14-100 44-4-F	
Secondary		PYAA	Pentafluoropropionamides	Good for ECD detection	
		HFBA	Heptafluorobutyamides	the second se	
	Akylation	MethElute" Reagent	Methyl Amides	On-column derivatization especially for drugs	
Arvines	Silylation	BSA	TMS		
H		BSTFA	TMS		
1		ESTFA+TMCS	TMS	TMCS aids derivatization	
-C-NH		MISTEA	TMS		
H		MSTFA+TMCS	TMS	TMCS aids derivatization	
Delman		Tri-Sith Reagents	TMS		
eronacy.	Silviation	MTBSTFA	TROMCS	Difficult to form, but more stable	
		MTESTFA+TEOMCS	TREMICS	TBOMCS aids demotization	
H	Acylation	METFA	Initiuoroacetamides	Good for trace analysis with ECD	
1		TFAA	Trifluorpacetamides	Good for trace analysis with ECD	
-C-NHR		TFAI	Triffeotrocefamides	Good for trace applying with FCD	
		ISAA	Dantafiuncearconing smidag	wood for many many men COD	
Considers		UEAA	Hast discrete descriptor		
ownership		LIEDI	Hast Based at and the		
	10.000	11-0-0-1-0	Heydenia or courry armides	On only one daylor for the second to forme	
	Adjunt	Mediline"	Michtyl Amidas	Un-courren derivatization for specific drugs	
arbohydrates	swyation	MIS IFA	1M5	A CONTRACTOR OF	
(CH ₂ OH),		IMS	1MS	Can be used with some syrups	
	The second second	Tri-Si#* Reagents	TMS		
	Acylation	MBTFA	Trifluoroacetates	Volatile derivatives of mono-, di- and trisaccharides	
		TFAI	Trifluoreacetates		
	Silylation	BSA	TMS	Easily formed, generally not stable, analyze quickly	
		BSTFA	TMS		
		BSTFA+TMCS	TMS		
		MSTFA	TMS		
Carboxyl		TMCS	TMS	Can be used with some saits	
		TMS	TMS		
i		Tri-Sil [®] Reasonts	TMS		
		ATTENTEA	TRAMAS	More stable than TMS department	
		ATTRETES, TROASCE	TROACE	TEPANCE side demonstration	
	Madatian	DOD:	Destaficant in a father	Hand in CC detection & US/ SAC	
	verlands.	DC Harmon	Norma Control Children	Contraction of the second second second	
		Mathed 80 Deseased	Martin & Estates	Eathe solide and amine solide	
		wantites. wording	watchin Estillity	Patty acids and artisho acids	
		sneuhElute" Reagent	Merity) Esters	Un corumn derivatization	
		PPAA» Pentafiaoropropanol	Pentatiuoropropyl Ester	Drug analysis	
	Silylation	BSA	TMS	Most often used derivatives	
		BSTFA	TMS	Good thermal stability	
		BSTFA+TMCS	TMS	Poor hydrolytic stability	
		HMDS	TMS	Weak donor usually used with TMCS	
		MISTEA	TMS		
		MSTFA+TMCS	TMS		
Nydroxyl-OH		TMCS	TMS	Weak donor assually used with HMDS: can be used with saits	
B-0H		TMSI	TMS	Can be used with syrups	
Alexheis		To GP Bearing	TME	and the second sec	
Annual S		AFTERTEA	TERMINE	Man which they TMP, and MP, becaused they authored	
		MILEDINA	10/00-3	www.w.soned.tratt.i.wo, good wo tragmentation patients	
5	1.1.1.1.	MIBSTRATIEDMCS	18040-5	18UMC5 alds derivatization	
O)-OH	Acystoph	MBIEA	simuoroacetatea	Good for trace analysis with EDC	
		THAA	Trifluorpacefates	Good for trace analysis with EDC FCD not EDC 1	
Phenois		TFAL	Trifluoroacetates	Good for trace analysis with EDC	
		PEPI	Pentalluoropropionales	Good for trace analysis with EDC	
		PFAA	Pentafluoropropionates	Good for trace analysis with EDC	
		HFBL	Heptafluorobutrates	Good for trace analysis with EDC	
		HEAA	Heptafluorobutrates	Good for trace analysis with EDC	catalogue page of a GC Supplie
		La lor	the part of the same the second	and the second sec	

Flüssigchromatographie (LC, Liquid Chromatography)

HPLC (High Performance (or Pressure) Liquid Chromatography)

Name	Trennprinzip
Normalphasen-HPLC -	Adsorption (und Verteilung)
Umkehrphasen-HPLC -	Verteilung (und Adsorption)
Hydrophilic Interaction LC	Verteilung (und Adsorption)
Grössenausschluss-Chrom.	Grössenausschluss
Ionenchromatographie	Ionische Wechselwirkung
Affinitätschromatographie	Bindungsaffinität (nicht-kovalente Bindungen)
Chirale Chromatographie	Bildung und Trennung von Diastereomeren

Dünnschichtchromatographie (TLC, Thin-Layer Chromatography)

Kapillar-Elektrophorese (CE)

 \rightarrow CE ist streng genommen keine Chromatographie

Adsorptionschromatographie

Adsorptionschromatographie = Trennung beruht auf der unterschiedlich starken Adsorption der Analytmoleküle an die Oberfläche einer festen stationären Phase. Dies ist das wesentliche Trennprinzip der Normalphasen-LC (normal phase liquid chromatography = NPLC), wo meist Kieselgelpartikel als stationäre Phase eingesetzt werden, an welche Analytmoleküle aufgrund ihrer Polarität unterschiedlich stark adsorbieren. Die Trennung erfolgt also gemäss der Polarität der Moleküle.

Verteilungschromatographie

Verteilungschromatographie = Trennung beruht auf der Verteilung zwischen zwei flüssigen Phasen. Bei der Umkehrphasen-LC (reversed phase liquid chromatography = RPLC) werden an Kieselgelpartikel chemisch gebundene stationäre Phasen verwendet (z.B. Alkylketten). Im Gegensatz zur NPLC ist hier die stationäre Phase apolar bzw. hydrophob, weshalb die Moleküle in umgekehrter Elutionsreihenfolge nach Polarität bzw. nach ihrer Hydrophobizität getrennt werden.

UHPLC (Ultra High Performance LC)

(A more detailed look on the influence of particle size in LC)

Chromatographic resolution [R_s] is simply the width [w] of two peaks relative to the distance $[t_{\rm R,2}-t_{\rm R,1}]$ between those peaks

-> narrower peaks -> improved resolution

$$Rs \equiv \frac{l_{R,2} - l_{R,1}}{\frac{1}{2} (w_1 + w_2)} = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha}\right) \left(\frac{k}{k+1}\right)$$

Efficiency Selectivity Reterving

Fundamental resolution equation. [N] is plate count, $[\alpha]$ is selectivity and [k] is retention factor.

The next figure tries to graphically demonstrate the influence of the three parameters .

- retentivity [k] and selectivity $[\alpha]$ are factors that move peaks relative to one another and are a measure of the interaction of the analytes with the stationary phase and the mobile phase.
- one can improve resolution by increasing k (but: longer retention times, lower sensitivity and wider peak widths).
- an increase in α can result in more resolution, the same peak elution order in a similar
- amount of time, and/or an elution order change (but: the best stationary phase have to be found).
 by reducing particle size (d_p) of the packing material, the number of theoretical plates [N] is increased (similar to the column length in GC), while the center-to-center peak distance does not change. Additionally, a reduction in particle size will result in narrower, more efficient chromatographic peaks, thus improving resolution and sensitivity.

The discussion above demonstrates the importance of intra-column band spreading. If one can further understand what processes influence band spreading and how to reduce it, improvements in efficiency, and therefore resolution, can be achieved.

Understanding van Deemter Curves

As described above, the width of a peak can be thought of as a statistical distribution of the analyte molecules [variance, o2]. The peak width increases linearly in proportion to the distance in which that peak has traveled. The relationship between peak width and the distance in which that peak has traveled, is a concept called the height equivalent to a theoretical plate [HETP or H]. Originating from distillation theory, H is a measurement of column performance that takes into account several band spreading related processes. To put this into terms that may be more familiar, the smaller the HETP, the more plates [N] there are in a column.

HETP = $\frac{L}{N}$

Simplified equation to determine HETP. [L] is column length, [N] is plate count and [HETP] is height equivalent to a theoretical plate

Understanding Column Resolving Power [L/dp]

When performing a chromatographic separation, the primary goal is to resolve one component from another so that some or all of the components can be measured. The maximum resolving power of a column can be estimated by dividing the column length [L] by the particle size [dp]. The L/dp ratio is particularly useful when trying to determine which particle size packing material and column length may be necessary for a given application [table below].

Typical HPLC Column 4.6 x 150 mm, 5 µm	Separation Index	Application Example	Efficiency (N)	L/dp
Column Length (L) = 150 mm = 150,000 µm	Easy	Content uniformity	5,000	15,000
iq ≈6µπ	Moderately Challenging	Related compound assay	12,000	30,000
$\frac{1}{d_p} = \frac{150,000}{5} = 10,000$	Difficult	Impurity profiling	20,000	50,000
Calculating the L/dp ratio.	Extremely Difficult	Metabolite identification	35,000	85,000

This ratio can also be used as a tool for transferring methods from one particle size to another. A column that has an L/dp ratio of 30,000 [moderately challenging separation] is a very common selection. As can be seen in the next figure, a typical HPLC column that produces a resolving power of 30,000 is 150 mm long and is packed with 5 μ m particles. As particle size is decreased, the same resolving power can be achieved in a shorter column [which means faster analysis time; i.e. a 50 mm long column packed with 1.7 μ m particles achieves an L/dp ratio of 30,000]. In addition to shorter column length, the optimal flow rate increases as particle size decreases, which further adds to the reduction in analysis time.

Measuring Gradient Separation Performance [Peak Capacity]

Under isocratic conditions, plate count [N] is a measure of the cumulative band spreading contributions of the instrument and the column. Due to diffusion related band broadening, the width of an analyte band increases the longer the analyte band is retained on the stationary phase.

In a gradient run, the elution strength of the mobile phase changes over the course of the analysis. This causes stronger retained analyte bands to move more quickly through the column [thus changing retention time], keeping the bands more concentrated [narrow]. In reversed-phase chromatography, the increasing elution strength of the mobile phase controls the width of the bands being produced, resulting in similar peak widths as the bands pass through the detector. Since peak width and retention time are being altered by the changing strength of mobile phase, plate count [due to its relationship to peak width] is not a valid measurement for gradient separations.

The resolving [separation] power of a gradient can be calculated by its peak capacity [Pc]. Thus, peak capacity is simply the theoretical number of peaks that can be separated in a given gradient time. Peak capacity is inversely proportional to peak width. Therefore, for Pc to increase, peak width must decrease.

Nac	hteile:		
• g • h [jeringere Probenkapaz nohe Anforderungen an Detektorzelle)	ität (relativ) ı Detektor (z.B.	Volumen der
Abb.	Mikro-HPLC-Säule		
_			
Abb.	"Nano"-HPLC-Säule (gefül Glaskapillare)	lite	

interaktive Chromatographietyper	1	
lonen-(austausch)- chromatographie	IC (IEC)	elektrostatische Wechselwirkungen
Normalphasen-chromatographie	NPC (NP-HPLC)	polare Wechselwirkungen
Umkehrphasen-chromatographie	RPC (RP-HPLC)	unpolare Wechselwirkungen
Ionenpaar-Umkehrphasen- Chromatographie	IPRPC	elektrostatische Wechselwirkungen
Hydrophobic interaction chromatography	HIC	dispersive Wechselwirkungen
Affinitätschromatographie	AC	biospezifische Wechselwirkung
Metal interaction chromatography	MIC	Komplexierung mit einem immobilisierten Metall

- Polymerkügelchen (~ 10μm Teilchengröße)
- Kieselgel- oder poröse Glasteilchen (~ 10μm Teilchengröße)

Тур	Porengröße [Å]	Ausschlußgrenze [amu] (atomic mass units)
Polystyrol/	10 ²	700
Divinylbenzol-	104	(1 bis 20) x 10 ⁴
Copolymerisate	10 ⁶	(5 bis 10) x 10 ⁶
Kieselgel	125	(0.2 bis 5) x 10 ⁴
	500	(0.05 bis 5) x 10⁵
	1000	(5 bis 20) x 10 ⁵

Anwendungsbeispiele:Bestimmung von Molekülmassenverteilungen von Polymeren

 Isolierung hochmolekularer Substanzen von niedrigmolekularen Substanzen (Gel-Filtration), z.B. zur Isolierung von Proteinen (z.B. Entsalzen von Proteinlösungen)

Biopolymer	M _r	Molecular dimensions (nm)
Cytochrome c	12 3 10	2.5 x 2.4 x 3.7ª
Carbonic anhydrase	28 800	4.7 × 4.1 × 4 1ª
Lactate dehydrogenase	146 200	$7.4 \times 7.4 \times 8.4^{a}$
Ferritin	474 000	8 × 8 × 8ª
DNA, 100 base pairs	69400	$35 \times 2 \times 2$ (straight rod)
DNA, 800 base pairs	519 200	$60 \times 60 \times 60$ (random coil) ^b

http://www.youtube.com/watch?v=oV5VB5kO3tQ

\Rightarrow	oder durch Zugabe von " <i>displacer</i> "-Molekülen
Be Im	eispiele zur Affinitätschromatographie: munoaffinitäts-Chromatographie
⇒	Ausnutzung der Eigenschaft von Wirbeltieren selektiv Antikörper gegen körperfremde Substanzen zu bilden
An	tikörper ⇒ Serumproteine (auch Immunglobuline), die u.a. von weißen Blutkörperchen als Antwort auf körperfremde Substanzen (Antigene) gebildet werden)
An	tigene ⇒ z.B. Bakterien, Viren, Proteine, Kohlenhydrate aber auch beliebige hochmolekulare synthetische Verbindungen (MW >1000)

Detektoren für die LC

Detektionsprinzip	NWD	dynam. Bereich	Bemerkungen
UV-vis-Detektion (Absorption)	+	+++	Standarddetektor
Diodenarray-Detektion (Absorption)	+	+++	auch Hinweise zur Identifizierung (UV/vis- Spektrum)
Fluoreszenz-Detektion	+++	+++	nachweisstark/preisgünstig
Chemilumineszenzdetektion	+++	++	hochselektiv
Elektrochemische-Detektion	+++	++	ausgewählte Substanzgruppen
Verdampfungslichtstreu-Detektion	0	++	Universaldetektor, keine salzhaltigen Eluenten
Brechungsindexdetektion		+	Universaldetektor
Massenspektometrische Detektion	+++	+	auch Identifizierung

UV-	vis-Detektion
⇒	Messung der Lichtabsorption zwischen ca. 190 und 900 nm
⇒	Absorption beruht auf der Anregung äußerer Elektronen von Molekülen (elektronische Anregung)
	$M + h \cdot v \to M^*$
⇒	Es gibt verschiedene Arten der elektronischen Anregung, abhängig von den vorhandenen funktionellen Gruppen:
	$σ$ to $σ^*$ Alkane $σ$ to $π^*$ Carbonylverbindungen $π$ to $π^*$ Alkene, Carbonylverbindungen n to $σ^*$ Sauerstoff-, Stickstoff-, Schwefel- und Halogenverbindungen n to $π^*$ Carbonylverbindungen

Chromophor	Übergang	Beispiel	λ _{max} [nm]
с—н	$\sigma \rightarrow \sigma^{*}$	CH ₄	122
C— Hal	n→\sigma*	H ₃ C—CI	173
	n→\sigma*	H ₃ C—Br	204
	$n{\rightarrow}\sigma^*$	H ₃ C—I	258
	$n \rightarrow \sigma^*$	CHI ₃	349
C-NO ₂	$\pi \rightarrow \pi^*$	H ₃ C-NO ₂	210
	$n \rightarrow \pi^*$		278

Tab. Absorptionen isolierter chromophorer Gruppen

Brechungsindex-Detektion

- \Rightarrow Durchfluss-Refraktometer
- \Rightarrow Messung der Unterschiede des Brechungsindex der mobilen Phase und Analyt
- \Rightarrow universell aber vergleichsweise unempfindlich
- \Rightarrow keine Gradientenelution möglich

Ü berkritische Fluidchron (SFC))	natographie (supe	ercritical fluid chr	romatography
Prinzip: als mobile Pha eingesetzt wobei als st verwendet werden (ähr	se wird ein über ationäre Phaser nlich HPLC) ode	kritisches Fluid kurze gepackt r (mittlerweile s	(meist CO ₂) e Säulen eltener)
 ängere offene Kapillare Kombiniert einige d Verbindungen) mit V 	en (ahnlich GC) er Vorteile der H /orteilen der GC	PLC (Analyse (z.B. Einsatz	nicht flüchtige
 Ängere offene Kapillare Kombiniert einige d Verbindungen) mit V unterschiedlicher D 	en (ahnlich GC) er Vorteile der H /orteilen der GC etektoren)	PLC (Analyse (z.B. Einsatz	nicht flüchtige
ängere offene Kapillaro Kombiniert einige d Verbindungen) mit V unterschiedlicher D	en (annlich GC) er Vorteile der H /orteilen der GC etektoren) gasförmig	PLC (Analyse (z.B. Einsatz überkritisch 3. 10 ⁻¹	nicht flüchtige flüssig
 Ängere offene Kapillare Kombiniert einige d Verbindungen) mit v unterschiedlicher D Dichte [g/cm³] Viskosität [g/cm s] 	en (ahnlich GC) er Vorteile der H /orteilen der GC etektoren) gasförmig 1. 10 ⁻³ 1. 10 ⁻⁴	PLC (Analyse (z.B. Einsatz überkritisch 3. 10 ^{.1} 5. 10 ^{.4}	nicht flüchtige flüssig 1. 10 ⁰ 1. 10 ⁻²

•	geringe Viskosität \Rightarrow höhere Flussraten als in der LC und damit schneller Trennungen						
•	große Diffusionskoef zwischen mobiler un Signalverbreiterung o	fizienten \Rightarrow sch d stationärer Pl durch Diffusion	nelle Gleichgev nase (C-Term va (B-Term van-Do	vichtseinstellungen in-Deemter) aber au eemter)			
	Saulentyp	ID [mm]	Lange [m]	Korngroße[µm]			
	offene Kapillaren	0.025 - 0.1	1 - 35				
		0.1 - 0.5	0.05 - 0.5	3, 5, 10			
	gepackte Kapillaren						

SFC bietet sich als	s Trennmethode an wenn es sich um nicht flüchtige
der thermolablie	Analyten handelt, weiche sich nur schlecht durch die
Dichen APLC Deu	ektoren hachweisen lassen (entweder Einsalz
htrennung der m	ohilen Phase als in der IC)
bietet sich an wei	nn SFE (supercritical fluid extraction) bei der
robenvorbereitun	ng eingesetzt wird
- Polyme	ranalytik (Trennung von Oligomeren)
- PAH-An	alytik
- Naturst	off-Analytik
- Pharma	azeutika
eher seltener ein	gesetzt da instrumentell aufwendig und
etentionsverhalte	en schwieriger zu kontrollieren ist: Beispielsweise
xistiert mit der Ko	ompressibilität ein weiterer Faktor der die Retention
eeinflusst aber sc	hwer vorhersagbar ist (in der GC: auch Kompressibilität aber
ine WW mit der mohi	len Phase, in der I C: keine Kompressibilität der mobilen Phase)

Venus Atmosphere

Surface pressure: 92 bars (9,2 MPa) Average temperature: 464 °C 96.5% Carbon Dioxide, 3.5% Nitrogen

"The pressure found on Venus's surface is high enough that the carbon dioxide is technically no longer a gas, but a supercritical fluid. This supercritical carbon dioxide forms a kind of sea that cover the entire surface of Venus. This sea of supercritical carbon dioxide transfer heat very efficiently, buffering the temperature changes between night and day (which last 56 terrestrial days)."

Fegley, B. et al. (1997). Geochemistry of Surface-Atmosphere Interactions on Venus ISBN 0-81-651830-0.

Trenntechniken Elektrophoretische Trennverfahren

• daraus folgt für die Geschwindigkeit einer Komponente <i>i</i> in einem konstanten elektrischen Feld ($F_e = F_R$):
$v_i = \frac{z_i \cdot e_0}{6 \pi \cdot \eta \cdot r} \cdot E$ r hydrodynamischer Radius des hydratisierten Ions (ungleich Ionenadius)
 daraus ergibt sich unter definierten experimentellen Bedingungen eine Stoffkonstante der Komponente <i>i</i>, die elektrophoretische Mobilität μ_i:
$\mu_i = \frac{v_i}{E} = \frac{z_i \cdot e_0}{6\pi \cdot \eta \cdot r} [\text{cm}^2 \text{V}^{\text{-1}} \text{s}^{\text{-1}}]$
\Rightarrow nur Trennung geladener Analyten, Trennung beruht auf Unterschieden der Molekülgröße (<i>r</i>) und Ladung z_i
⇒ elektrophoretische Verfahren stellen daher zunächst einmal keine chromatographischen Methoden dar (keine Verteilung zwischen einer mobilen und stationären Phase)
⇒ aber: sehr ähnliche Instrumentierung (Kapillarchromatographie) als auch Mischformen (s.u. micellare elektrokinetische Chromatographie)

\Rightarrow 1000 Buchstaben pro Seite (Abb.	1	Hinell GTCGACGCGA TTTTTTGCGC TGAGTGAATG ATTAGCTAGC TAAGTCTTT
Rechts)	51	TCTTCCAAGA TGACCATTTC CGTACATGTA TATGTAACCG TAAATGCAT $$a$
\Rightarrow 300 Seiten pro Buch	101	caltertare terretate terretate terretate $\frac{1}{2}$
\Rightarrow insgesamt 10.000 Bände	151	алтатт тттт ттаттеттте талалталас ттатса \underline{TGAG} $\underline{AGA}\mathtt{T}\underline{TGAGA}$ b
	201	AGATGTACCC AGCTCAGCAA TCACAGCTCC CTTAAAATAT ACTTAGCAA
Potentielle medizinische	251	TCCTTTTCTT CCTAAGAGGA CCATTTCTAC ATATGTAACC ATAAATGCA
Anwendungsgebiete	301	CGRACTTAGT ACCCCATCTA GCTATCTGCA TCACTGACCA TTTCTTACG
in Zusammenhang mit dem	351	CCTCCACATA GTTTAGTTAA TAAATGTTCA GTAATCTCAG TATATATAT \mathbf{c}
HGP	401	$\underline{\operatorname{TATAT}}_{\mathbf{C}}$ cats teattogger eigeneate cacagerate anactatan \mathbf{c}
	451	CAGAGACAGC ATATCAGATA GCCAACGCTC TCATCAAGCG AAGGGAGAA
lests zur genetischen Prädisposition		CGAAGAAAAC CTGGAAGTCC AGGTGGCGAT GCCGGAAGTT GTTGATCGT
	551	TGGATCATTA TTACCAAGGG CCCCGGGCAT TATATTTATA CCCGGGATG
\Rightarrow genombasierte molekulare Diagnostik	601	AASTCCANAT CCTAACAAAC TCTGCTAGAG ATAAAAGGA AACAACTC
\Rightarrow "evidence based medicine"	651	TAAAGAAAAG GAAACACACT CCTAAGGATA AACGGAAACA AACTCCTAA d f
Vorhersehbarkeit von Krankheiten führt	701	TARTAGATAC ARAATTARTS COSCATCOTT ATCORACTOS STOTTOTOT
zu zielgerichteten Therapien	751	GATAAACTTC CTCTGATGCA TTCAACCGTA TCTTCTAAGG ACTCGGCGG H/ncli
	801	TGGTGACCTC CATOGGCCAA TGTTGAC

Next-Generation Sequencing

https://www.youtube.com/watch?v=womKfikWlxM

Next-Generation Sequencing Technologies - Elaine Mardis (2012) – Vortrag auf youtube

Gel-Elektrohorese

http://www.benchfly.com/video/110/dna-horizontal-gel-electrophoresis/

Allgemeines

Arbeitsprinzip:

- Überführung von neutralen Spezies in Ionen (Ionenquelle)
- Trennung der Ionen (Masse zu Ladungsverhältnis, *m/z*) (Analysator)
- Nachweis der Ionen (Detektor)

Die Massenspektrometrie ist keine zerstörungsfreie Methode wie IR- oder NMR-Spektroskopie – der Analyt wird bei der Messung verbraucht.

Terminologie Massenspektrum - zweidimensionale Darstellung der Ionenhäufigkeit (Intensität der Signale) gegen Ionenmasse zu Ladungs-Verhältnis (m/z) Basispeak (base peak) - intensivster Peak im Massenspektrum einer Substanz, auf den die anderen Signale (Peaks) normiert werden können (relative Intensität %) Strichspektren – Zuordnung der m/z-Verhältnisse zu ganzzahligen Werten (Nominalmassen s.u.) Profilspektren – Wiedergabe der kompletten Peakform Peaklisting - tabellarische Wiedergabe des Massenspektrums (s.u.) Totalionenstrom (total ion current, TIC) – Summe der Ströme, die von den Ionen aller m/z-Werte im Spektrum erzeugt wird Molekülion – normalerweise das Ion mit der höchsten Masse im Massenspektrum, das dazugehörige Signal bezeichnet man auch als Molpeak Fragmentionen – bilden sich aus dem Molekülionen durch Zerfall (Primär- und Sekundärfragmentionen)

100.125	
	100.205
100.089	100.161
97 	
	97

⇒ alle Massenspektr gebildeten Ionen i Detektor erreicher einer Änderung de	ometer werden unter Vakuum dealerweise ohne Stöße mit an n sollen (Kollisionen würden zu er Flugbahn führen ⇒ Wandver	betrieben, da die Ideren Molekülen den m Zerfall des Ions oder rluste)
Kinetische Gastheorie	\Rightarrow mittlere freie Weglänge <i>L</i> :	
$L = \frac{kT}{\sqrt{2}p\sigma}$	mit $k = Boltzmann-Konstante $ T = Temperatur [K], p = Druck [Pa] und $\sigma = Stoßquerschnitt [m2]$	JK ⁻¹], Warum ist L temperaturabhängig ? bei V = const. ist auch T/p const. (anders ausgedrückt T und p sind nicht unabhängig – steigt T steigt auch p => L = con
⇒ die notwendige n eingesetzten Ma betragen ⇒ notw	nittlere freie Weglänge häng ssenspektrometer ab, sollte /endiges Vakuum :	t unter anderem vom aber üblicherweise 1 m
\Rightarrow 6.6 \times 10 ⁻⁸ bar	bzw. 5×10^{-5} Torr bzv	<i>N</i> . 6.6 × 10 ⁻³ Pa

Wellenlängen lieger Molekülen, z.B.:	im Bereich der Bindungslängen in organischen
С-С	1.54 Å
С=С	1.33 Å
С-Н	1.1 Å
⇒ starke Wechselv Energieübertrag	irkung zwischen Elektronenstrahl und Molekülen \Rightarrow
⇒ übersteigt die ü	ertragene Energie die Ionisierungsenergie des Moleküls
Verlust eines Ele	ktrons (daher sollte statt dem früher verwendeten Begr
"Electron impac	" besser <i>"Electron Ionisation</i> " verwendet werden)

$VI + e^{-} \rightarrow$	M⁺• +	2e-	(Ionisation und Elektronenpaarbildung)
$V + e^- \rightarrow$	M⁻∙		(Elektroneneinfang)
positive Ana der Ionenqu Massenspek	Ilytionen (Ra Ielle (Fragm Atren der An	adikalkat entierun ialyten	ionen M ^{+ .}) dissozieren meist unmittelbar in g, μ s-Bereich) \Rightarrow charakteristische
positive Ana der Ionenqu Massenspek	llytionen (Ra Ielle (Fragm ttren der An	adikalkat entierun ialyten	ionen M ^{+ ·}) dissozieren meist unmittelbar in g, μ s-Bereich) \Rightarrow charakteristische
positive Ana der Ionenqu Massenspek	llytionen (Ra Ielle (Fragm Atren der An	adikalkat entierun alyten	ionen M⁺`) dissozieren meist unmittelbar in g, μs-Bereich) ⇒ charakteristische

 $(R + H)^{+} + M \longrightarrow (M)^{+} + R + H_{2}$ (Bildung von Molekülionen)

z.B. $(CH_5)^+$ + $C_{10}H_{22} \rightarrow C_{10}H_{21}^+$ + CH_4 + H_2

- hoher Überschuss an Reaktandgas (1/1000 1/10000 M/R)
- die Verwendung der unterschiedlicher CI-Gase bestimmt die Gruppe von Analyten, welche in der Quelle ionisiert werden

Protonentransfer	
Protonentransferre Reaktionen zwisch Protonendonatore	eaktionen sind im Prinzip Brönstedsche Säure-Base en den Reaktantgasionen (z.B. CH ₅ ⁺) als Säure en) und den Analyten als Base (Protonenakzeptoren)
⇒ die Effizienz eir und dem Analy abgeschätzt we	ner Protonentransferreaktion zwischen dem Cl-Gas t kann anhand der Protonenaffinitäten (PA) erden
M + H+	MH^+ $\Delta H = - PA [kJ mol^{-1}]$
M + H ⁺	MH ⁺ Δ H = - PA [kJ mol ⁻¹] h (PA) gebräuchlicher Cl-Gase z.B. CH ₄ < iso-C ₄ H ₁₀ < NH ₂ PA [kJ mol ⁻¹]
M + H ⁺ Protonenaffinitäte Moleküle CH ₄	$MH^{+} \qquad \Delta H = - PA [kJ mol^{-1}]$ $(PA) gebräuchlicher CI-Gase z.B. CH_4 < iso-C_4H_{10} < NH_4$ $PA [kJ mol^{-1}]$ 543
M + H ⁺ Protonenaffinitäte Moleküle CH ₄ i-C ₄ H ₁₀	$\Delta H = - PA [kJ mol-1]$ $(PA) gebräuchlicher CI-Gase z.B. CH4 < iso-C4H10 < NH4$ $PA [kJ mol-1]$ 543 677
M + H ⁺ Protonenaffinitäte Moleküle CH ₄ i-C ₄ H ₁₀ NH ₃	$\Delta H = - PA [kJ mol-1]$ $(PA) gebräuchlicher Cl-Gase z.B. CH4 < iso-C4H10 < NH2$ $PA [kJ mol-1]$ 543 677 854

	Isotop ³² S	rel. Häufig 95.02	gkeit [%]	
	³³ S ³⁴ S	0.75 4.21		
	- la tra catta ca		and the state of the state base of the state	-1-114
nogliche Kon 2c 32c	nbinationen	Masse	statistische Wahrscheinli	Chkeit – 0 0021
-33 25 335 odor 33	3c 32c	65	0.9502×0.9502 (0.9502×0.9502) × 2	= 0.9031
² S ³⁴ S oder ³⁴	ις 32ς	66	$(0.9502 \times 0.0073) \times 2$ $(0.9502 \times 0.0421) \times 2$	= 0.0142 = 0.080
³ S ³³ S	5 5	66	0.0075×0.0075	= 5.6×10 ⁻⁵
³ S ³⁴ S oder ³⁴	¹ S ³³ S	67	(0.075×0.0421) × 2 = 0.0	0063
⁴ S ³⁴ S		68	0.0421×0.0421	= 0.00178

Signals 80 - 64 90.31 100 80 - 65 1.42 1.5724 70 - 66 8.026 8.889 60 -	-
65 1.42 1.5724 70 - 66 8.026 8.889 60 -	-
66 8.026 8.889 ₆₀ -	
	-
67 0.063 0.06975	
68 0.1781 0.1972	
40 -	-
30 -	-
\rightarrow aber auch kommerzielle Software zur	-
Berechnung der Isotopenverteilung (z.B.	
IsoPro 3.0) 0	

		* Don't get e.g. CH ₃ CH	confused with isotopomers ,OD and CH,DCH,OH are isotopome
Unambiguous Elen	iental Formula Determinati	on s	· ·
Isotopologues* are isotopologue of a c than the parent.	molecules that differ only i hemical species has at lea	n their isotopic com st one atom with a d	position. Simply, the lifferent number of neutrons
Example: Water Hydrog "light w water" (Oxygen	en-related isotopologues: ater" (HOH), "semi-heavy v T ₂ O, as well as HTO and I -related isotopologues: H ₂	water" (HDO), "heav DTO) ¹⁸ O. (Ha ¹⁷ O)	y water" D ₂ O, "super-heavy
or even	both elements: D ₂ ¹⁸ O	-, (
or even For example: Focus and ² H isotopes ne	both elements: D ₂ ¹⁸ O sing on the A+1 pattern of eds very high resolution to	the molecular ion, w analyse the IFS	which consists of 15 N, 33 S, 13 C
or even For example: Focu: and ² H isotopes ne N(14) 14,003074 N(15) 15,000109	both elements: $D_2^{-18}O$ sing on the A+1 pattern of eds very high resolution to $\Delta = 0,997035$	the molecular ion, w analyse the IFS S(32) 31,972072 S(33) 32,971459	which consists of ¹⁵ N, ³³ S, ¹³ $\Delta = 0,999387$
or even For example: Focu: and ² H isotopes ne N(14) 14,003074 N(15) 15,000109	both elements: $D_2^{-18}O$ sing on the A+1 pattern of eds very high resolution to $\Delta = 0,997035$ $\Delta \Delta = 0,002$	the molecular ion, w analyse the IFS S(32) 31,972072 S(33) 32,971459 2352 => bei m/z 60	which consists of ¹⁵ N, ³³ S, ¹³ Δ = 0,999387 0 R > 250.000
or even For example: Focu: and ² H isotopes ne N(14) 14,003074 N(15) 15,000109 Same principle: foc	both elements: $D_2^{-18}O$ sing on the A+1 pattern of eds very high resolution to $\Delta = 0,997035$ $\Delta \Delta = 0,002$ us on A+2 pattern (¹⁸ O and	the molecular ion, w analyse the IFS S(32) 31,972072 S(33) 32,971459 2352 => bei m/z 60 d ³⁴ S isotopes)	/hich consists of ¹⁵ N, ³³ S, ¹³ 6 Δ = 0,999387 0 R > 250.000

The base peak chromatogram is similar to the TIC chromatogram, however it monitors only the most intense peak in each spectrum. This means that the base peak chromatogram represents the intensity of the most intense peak at every point in the analysis. Base peak chromatograms often have a cleaner look and thus are more informative than TIC chromatograms because the background is reduced by focusing on a single analyte at every point.

Quantitative Analysen

generell sind Massenspektrometer vergleichsweise unstabile Detektoren (z.B. im Vergleich mit FID), ausgelöst durch chemischen oder elektronischen "Untergrund", abnehmende Empfindlichkeit ("Instrumentendrift"), ungenügende Ionenstatistik etc.

- Aufnahme einzelner ausgesuchter m/z-Verhältnisse ("single ion monitoring" (SIM), "selected ion recording" (SIR), "multiple (single) ion detection"
 - insbesondere geeignet in Kombination mit chromatographischen Techniken (GC/LC)
 - Verbesserung der Nachweisgrenze (bis zu 2 Größenordungen) (Signal-zu-Rausch-Verhältnis wird verbessert, bessere Ionenstatistik)
 - gleichzeitige Quantifizierung charakteristischer Isotopensignale kann die Verlässlichkeit der Analysenergebnisse erhöhen
 - Quantifizierung über Signalflächen oder –höhen

_	externe Standards (unbekannte Probe und Kalibrationsstandard werden getrennt analysiert) sind geeignet wenn kein Einfluß von der Probenmatrix zu erwarten ist und die Anforderungen an Genauigkeit und Reproduzierbarkeit des Resultats nicht hoch sind
_	interne Standards (andere, aber chemisch/physikalisch ähnliche Verbindungen) können den Einfluß kritischer Analysenschritte (z.B. Probenahme- und Injektionsvolumen, Extraktionseffizienz) auf das Analysenergebnis eliminieren (homologe Substanzen, analoge Substanzen (z.B. mit anderen Heteroatomen)) meist in Verbindung mit externer Kalibration – oft deuterierte Analyten z.B. für die Drogenanalytik (Opiate, Amphetamine, Kokain and Cannabis in Urin) oder PAH-Analytik (z.B. 10D-Anthracen – Böden-Luft)
_	"Standardaddition"

- ⇒ eine Vielzahl von Einflüssen auf das Analysenergebnis wird kompensiert (nicht nur Matrixeffekte und Instrumentendrift sondern auch z.B. Probenahmeartefakte, Verluste während der Probenvorbereitung)
- $\Rightarrow\,$ nur noch das Isotopenverhältnis muss zur Quantifizierung bestimmt werden

Nachdem die Probe auf den Emitter aufgebracht wurde \Rightarrow Anlegen einer Hochspannung (mehrere Kilovolt) zwischen Emitter und Gegenelektrode \Rightarrow gleichzeitiges Aufheizen des Emitters \Rightarrow charakteristisch ist die Bildung von Molekülionen (M⁺) und [M+Na]⁺ [M+H]⁺.

Vorteile von FI/FD:

- einfache Massenspektren
- geringer chemischer Untergrund
- geeignet f
 ür kleinere organische Analyten (z.B. Zucker), "empfindliche" Analyten (z.B. metallorganische Verbindungen), Oligomere/Polymere und insbesondere auch unpolare höhermolekulare Analyten (z.B. petrochemische Fraktionen)

Nachteile:

- Emitter sind mechanisch sehr empfindlich
- relativ hohe Analysenzeiten (keine Kopplung mit LC)
- nicht anwendbar wenn die Analyten bei den
- Desorptionsbedingungen thermisch unbeständig sind \Rightarrow Molekulargewichte bis zu 3000 Da

• ca. 10¹⁰ Atome s⁻¹ mm⁻²

- Analyt ist aufgelöst in einer schwerflüchtigen, flüssigen Matrix (hauptsächlich Glycerin) Konzentration nM bis mM
- kinetische Energie der Xenonatome (manchmal auch Cs⁺ (Liquid Secondary Ion Mass Spectrometry (LSIMS) (im keV Bereich) führt zur Desorption/Ionisation der Analytmoleküle (Zucker, Pepitide und Nucleotide)
- Effektivität der Ionenbildung nimmt mit zunehmender Masse der Primärteilchen zu (heute wird praktisch ausschließlich mit beschleunigten Xenon Atomen oder seltener mit thermisch erzeugten Cäsium-Ionen als Primärpartikel bei FAB-MS gearbeitet).
- FAB-MS führt zu kontinuierlichen, relativ intensiven Ionenströmen, weil die vom Primärstrahl zerstäubte Oberfläche des Matrixtropfens ständig erneuert wird.
- Probensubstanzen müssen in der Matrix molekular gelöst sein. Verfügt der Analyt über oberflächenaktive Eigenschaften, wird ein besonders empfindlicher FAB-MS Nachweis beobachtet
- ⇒ Hinweis auf den FAB-Mechanismus (sog. precursor Modell) ⇒ vorgebildete ionische Analytmoleküle an der Oberfläche des Matrixtropfens werden direkt desorbiert und massenspektrometrisch analysiert

- werden negative lonen detektiert, treten lonen des Typs [M-H]⁻ durch Abstraktion eines Protons auf.
- FAB-MS-Spektren zeigen für die Matrix charakteristische Ionenserien (z.B. Glycerin: [(Gly)_n+H]⁺ n= 1-15 bzw. [(Gly)_n-H]⁻ n= 1-15)

Analyse synthetischer Polymere

Fragestellungen mittels MALDI-MS

- direkte Bestimmung von Molekülgewichtsverteilung
- Untersuchung des Polymerabbaus (z.B. lichtinduziert)
- Kinetische Analyse des Polymerisationsprozesses

Analyse synthetischer Polymere mittels MALDI-MS	
Auswahl der MALDI-Matrix ist schwieriger als bei Biomolekülen (sehr unterschiedliche Funktionalitäten, grosser Polaritätsbereich (z.B. PEG, Polystryrol) z.B.:	
PEG-Analytik – Matrix 2,6-DHB	
Polyamid-Analytik – Matrix 2'-(4-Hydroxyphenylazo)- Benzoesäure	J ^N NNNN S ^{OH}
auch verwendet: Ionische Flüssigkeiten (enthalten ausschließlich Ionen – flüssige Salze ohne Lösungsmitte	- also el)
z.B. N,N-diisopropylethylammonium alpha-cyano-4-hydroxycinnamate [Df	EA-CHCA]
Schlußfolgerung zur Auswahl der MALDI-Matrix: Lektüre von (neu Fachartikeln (z.B. Batoy et al., Appl. Spectrosc. Rev., 2008, 43, 485–550)	Jeren)
Kationisierungs-Reagenzien: Zur Ionisierung der oft schwierig zu ionisierenden synth Zugabe von "Kationisierungs-Agentien" wie Na-, K-Salze (heteroatomhaltige Polyeth Polyamide, Polyacrylate) oder Ag- oder Cu-Salze wenn DB vorhanden sind (Polybut Problem: Polyolefine (Polyethen, Polypropen) (weder heteroatome noch DB)	ո. Polymere ler, Polyester, adiene, Polystyrol)

- Der Begriff Elektrospray-Ionisation basiert auf Arbeiten von Dole (1968) und wurde letztlich durch Fenn 1984 etabliert (Nobelpreis Chemie 2002).
- Beim Elektrospray-Verfahren wird eine Lösung des Analyten (10⁻³ bis 10⁻⁵ mol/l) bei Atmosphärendruck aus einer Kapillare (ca. 0,1 mm Ø) in ein starkes elektrisches Feld versprüht.
- Die an der Kapillarspitze und einer Gegenelektrode angelegte kV-Spannung ist verantwortlich für die rasche und feine Zerstäubung der aus der Kapillare austretenden Lösung und für die effektive Ionisierung der Analyt-Moleküle.
- Ab eines Schwellenwerts der angelegten Spannung (2-6 kV) bildet sich ein stabiler Spray, der je nach Ladungspolarität zur Bildung von positiven bzw. negativen Ionen führt.
- Eine schonende Ionisierung wird erhalten, wenn eine stabile Vernebelung ohne Entladungen erzeugt wird.

•	Diese optimale Einstellung kann für eine breite Variation an Lösemittelzusammensetzungen und Flussraten (μ l bis ml/min) erreicht werden. Ein um die Kapillare konzentrisch angeordneter Inertgasstrom (meist N ₂) wird zur Unterstützung der Vernebelung gerade bei hohen Flussraten (μ l bis ml/min) eingesetzt.
•	Zur vollständigen Desolvatation der ladungstragenden Flüssigkeitstropfen und zur effektiven Ionenbildung wird in einer ESI-Ionenquelle entweder eine beheizte Transferkapillare oder ein dem Spray entgegengerichteter, beheizter Stickstoffstrom eingesetzt.
•	ESI \Rightarrow außergewöhnlich hohe Ionenbildungseffizienz von ca. 0,01 bis 0,1
	(vergi. El ca. 10 ⁻).
•	(vergi. El Ca. 10°). Die generierten Ionen werden letztlich durch eine Öffnung im Zentrum der Gegenelektrode in den Analysatorteil des Massenspektrometers überführt.
•	(vergi. El Ca. 10 °). Die generierten Ionen werden letztlich durch eine Öffnung im Zentrum der Gegenelektrode in den Analysatorteil des Massenspektrometers überführt. ELECTROSPRAY: FROM IONS IN SOLUTION TO IONS IN THE GAS PHASE, WHAT WE KNOW NOW
•	(vergi. El Ca. 10 °). Die generierten Ionen werden letztlich durch eine Öffnung im Zentrum der Gegenelektrode in den Analysatorteil des Massenspektrometers überführt. ELECTROSPRAY: FROM IONS IN SOLUTION TO IONS IN THE GAS PHASE, WHAT WE KNOW NOW Paul Rebarie ^{1,e} and Udo H. Verkerk ² "Paul Rebarie ^{1,e} and Udo H. Verkerk ² "Common Geleman Diversito of Alberta, Elemann, Alberta, Common for Rock to Mass Spectrowery Cl 230, Chemistry Building, York University 400 Kerk Streic Tomes, Damak MU IPF

Verkleinerung der Tropfen

- Die Größe der gebildeten Tropfen hängt von der Flussrate, der Oberflächenspannung, der Viskosität, der angelegten Spannung und der Konzentration des Elektrolyten ab. Für eine Flussrate von ca. 5 μl/min wässrige Lsg. und einer Konzentration von 1 mmol ergeben sich Tropfen mit Radius r ~ 1-3 μm und einer Überschussladung entsprechend der Ladung von 50000 einfach geladenen Ionen.
- Diese Tropfen verlieren durch Verdampfen Lösemittelmoleküle und bei Erreichen des Raleigh Limits (elektrostatische Abstoßung der Oberflächenladungen > Oberflächenspannung) werden viel kleinere Tropfen (sog. Mikrotropfen) emittiert. Dies geschieht aufgrund von elastischen Oberflächenvibrationen der Tropfen die zur Bildung *Taylor cone*-ähnlicher Strukturen führen.

Das Signal bei $m_{\rm 1}$ (m/z 1274.4) trägt z Ladungen (oder genauer gesagt ist zfach protoniert). Daraus folgt also:

$$m_1 = \frac{M+z}{z} \implies M = m_1 \cdot z - z \implies$$

Das Signal bei m_2 (m/z 991.4) trägt 4 Ladungen mehr (4 Protonen mehr). Daraus folgt:

$$m_2 = \frac{M+z+4}{z+4} \implies M = m_2 \cdot (z+4) - z - 4 \longrightarrow$$

 $\implies m_1 \cdot z - z = m_2 \cdot (z+4) - z - 4$

$$\Rightarrow m_1 \cdot z = m_2 \cdot (z+4) - 4$$

$$\Rightarrow m_1 \cdot z = m_2 \cdot z + 4 \cdot m_2 - 4$$

$$z = \frac{4 \cdot (m_2 - 1)}{(m_1 - m_2)} = 14$$

$$\Rightarrow m_1 \cdot z = m_2 \cdot z + 4 \cdot m_2 - 4$$

$$\Rightarrow m_1 \cdot z - m_2 \cdot z = 4 \cdot m_2 - 4$$

$$\implies z \cdot (m_1 - m_2) = 4 \cdot (m_2 - 1) \qquad \qquad M = m_1 \cdot z - z = 1274 \cdot 4 \cdot 14 - 14 = 17828$$

Magnetische und Elektromagnetische-Sektorfeldgeräte:

• erstes Massenspektrometer (Dempster 1918) - magnetisches Sektorfeldgerät:

Prinzip: Nach Durchlaufen eines Potentialgefälles (V) folgt für die kinetische Energie E_k von Ionen:

$$E_{k} = \frac{m \cdot v^{2}}{2} = z \cdot e \cdot V$$
m Masse des lons [kg]
z Anzahl der Ladungen
e Elementarladung [C]
v Geschwindigkeit nach Beschleunigung [m/s]

in einem magnetischen Feld (magnetischen Flussdichte *B*), ist die Kraft, welche auf die Ionen wirkt gegeben durch

$$F_m = B \cdot z \cdot e \cdot v$$

und die Ionen folgen einer Kreisbahn, deren Radius durch die gleichzeitig wirkende Zentrifugalkraft F_{r} gegeben ist:

$$F_z = \frac{m \cdot v^2}{r}$$
 und mit $F_m = F_z$ $B \cdot z \cdot e \cdot v = \frac{m \cdot v^2}{r}$ $\frac{m}{z} = \frac{B^2 \cdot r^2 \cdot e}{2 \cdot V}$

Einfluß der Spaltbreite

Beispiel: Der Einfluss der relativen Spaltbreite auf die Peakform und die Auflosung sei anhand des zweiten Isotopenpeaks des Molekül-Ions von Toluol, $^{13}C_2^{-12}C_4H_3^{-*}$, *m*:z 94, demonstriet (Abb. 4.21). Bei einem Eintrittsspalt von 50 µm ind einem Austrittsspalt von 500 µm ist der Peak abgeflacht (*flat-topped; links*), weil der aus dem Eintrittsspalt austretende schmale Strahl auf den weit geöffneten Detektorspalt trifft Dabei bleibt die Intensität konstant, während der Sean fortgesetzt wird, bis der Strahl den anderen Rand des Spalts passtert. Eine Verengung des Austrittsspalts auf 100 µm erhöht die Auflösung auf 2000, ohne die Peakhöhe zu beeinflussen (*Mitte*), verringert aber die Peakfläche um den Faktor 4 entsprechend einer Erhöhung der Auflösung um denselben Faktor. Eine weitere Verengung des Austrittsspalts auf 30 µm erhöht die Auflösung auf Kosten der Peakhöhe (*rechts*). (Dies gilt für jedes Sektorfeld-Gerat, andernfalls ist eine Reinigung oder anderweitige Wartung erforderlich.)

 Abb. 4.21. Einfluss der relativen Spaltweite auf Peakform und Auflösungsvermögen bei einem Magnetsektorfeld-Massenspektrometer, wenn bei konstanter Weite des Austrittsspalts der Eintrittsspalt geschlossen wird. Die Peakform ändert sich zunächst von flat-topped (links) zur Gauß-Glocke (Mitte); schließlich verbessert sich das Auflösungsvermögen weiter, aber auf Kosten der Intensität (rechts).

 aus: Gross, Massenspektrometrie, 2013, Springer

Aufnahme des Massenspektrums Wenn $U = 0 \Rightarrow a_z = 0$, für q_z ergibt sich: $q_z = \frac{8z^* eV}{m(r_0^2 + 2z_0^2)\omega^2}$ z^* Anzahl der Ladungen, r_0 und z_0 Abmessungen der Falle da ω einen festen Wert besitzt, z^* üblicherweise 1 ist und e, r_0 sowie z_0 konstant sind $\Rightarrow q_z$ wird größer mit steigendem V und kleiner mit steigendem m \Rightarrow wird V im Laufe der Zeit erhöht, verlassen nacheinander die verschiedenen Massen die Falle in z-Richtung, beginnend mit niedrigen Massen ("mass selective instability")

Vorteile von lonenfallen:

- Arbeitsdrücke vergleichsweise hoch (ca. 10⁻³ Torr) (⇒ einfache Kopplung mit chromatographischen Techniken)
- Möglichkeit von MS/MS
- sehr niedrige absolute Nachweisgrenzen (komplette Spektren bei Substanzmengen < 10pg)
- mittlerweile Massenbereiche bis *m/z* 40000

Nachteile von lonenfallen:

- vergleichsweise niedrige Auflösung (niedriger als doppelfokussierende MS)
- eingeschränkter dynamischer Bereich und Reproduzierbarkeit
- deutlich höhere Anschaffungskosten als Quadrupolgeräte

MS/MS	(MS ⁿ)

Read out of oligomer sequences (see above DNA with MALDI)

But also sequences-defined macromolecules

sequences-defined macromolecules are used for anti-counterfeiting (Fälschungssicherheit), data storage, encrypting

Nature communications, 2018, doi: 10.1038/s41467-018-06926-3 (martens et al.)

Die Bildungsenthalpien von (a) und (b) sind – 289 und – 278 kJ mol-1

 \Rightarrow Unterschied ~ 11 kJ mol⁻¹

$$\Delta m = \frac{\Delta E}{c^2} = \frac{11 \text{ kJ mol}^{-1}}{(2.998 \times 10^8 \text{m s}^{-1})^2 \times 6.023 \times 10^{23} \text{mol}^{-1}}$$
$$= 2.0 \times 10^{-37} \text{kg} \cong 1.2 \times 10^{-10} \text{Da}$$

Damit ergibt sich eine notwendige Auflösung von:

$$R = \frac{m}{\Delta m} = \frac{102}{1.2 \cdot 10^{-10}} = 8.5 \cdot 10^{11}$$

J. Meija, Anal. Bioanal. Chem., (2005), 383, 728.

⇒ Fourier Transfor	rm Massenspektrom	netrie (FTMS) basiert auf dem
Prinzip der Ione	n-Zyklotron-Resona	anz (<i>ion cyclotron resonanc</i> e (ICR)).
⇒ lonen (gebildet	durch EI, MALDI od	er ESI) werden innerhalb einer
Zyklotron-Zelle i	n einem starken ho	mogenen Magnetfeld gespeichert.
⇒ die Ionen werde	en durch das Magne	tfeld auf Kreisbahnen gezwungen
deren Radien se	ehr viel kleiner als d	er Zellenradius sind und kreisen dort.
Zentripedalkraft:	$F = z \cdot v \cdot B$	 v Geschwindigkeit z Anzahl der Ladungen B magnetische Flußdichte
Zentrifugalkraft:	$F' = \frac{m \cdot v^2}{r}$	m Masse r Radius
mit E(− E →	$\pi \cdot v \cdot B = \frac{m \cdot v^2}{2}$	$dar = z \cdot B - \frac{m \cdot v}{m \cdot v}$

 $\Rightarrow~$ ein kreisendes Ion vollendet eine komplette Kreisbahn mit einer Frequenz ν_0 gleich:

 $2\pi \cdot v_0 = \frac{v}{r} = \frac{z}{m} \cdot B$

$$v_0 = \frac{v}{2\pi \cdot r}$$

woraus folgt:

beeinflusst v den Radius r)

⇒ die Frequenz hängt ab vom m/z-Verhältnis und der magnetischen Feldstärke B – nicht von der Geschwindigkeit des Ions (allerdings

 ⇒ Anlegen einer Wechselspannung zwischen der geteilten äusseren Elektrode erlaubte die Beobachtung von Resonanz – allerdings war die Resonanz schwächer, breiter und frequenzverschoben ⇒ Knight schlug vor, dass die Zentralelektrode das harmonische Wechselfeld deformiert

FIGURE 2. Schematic showing the Knight-style Kingdon trap (''ideal Kingdon trap''(Gillig, Bluhm, & Russell, 1996; Makarov, 2000)). The modified shape of the outer electrode produces a quadrupolar potential superimposed upon the logarithmic radial potential of a cylindrical capacitor. Ions are injected through the gap in the outer electrode (at z=0), application of RF to the outer electrode excites the ions to begin harmonic oscillations along *z*. No mass analysis was reported. Trapped

- \Rightarrow die Probe (einige mg) wird in Form von Graphit oder CO₂ in die Quelle gebracht und durch Beschuß mit Cs-Ionen ionisiert und beschleunigt (25 keV)
- \Rightarrow es werden negative lonen extrahiert um ¹⁴C von ¹⁴N zu trennen (letzteres bildet keine negativen lonen)
- ⇒ der erste Magnet wird als gewöhnlicher magnetischer Massenanalysator genutzt und Masse 14 selektiert (neben ¹⁴C⁻-Ionen werden hauptsächlich ¹²CH2⁻ -Ionen und ¹³CH⁻ Ionen darunter sein)
- ⇒ die Ionen treten in den eigentlichen Beschleuniger ein und werden durch ein Potentialgefälle im Megavoltbereich derart beschleunigt, das sie bei der Kollision mit Atomen im so genannten "Stripper Kanal" (Strippergas (Ar) oder einer Stripper-Folie) nicht nur in Atome zerlegt werden, sondern auch mehrere Elektronen verlieren (hauptsächlich Bildung von C³⁺-Ionen)

Abb. AMS Beschleuniger

