

Determination and quantification of fatty acids in speleothems and cave drip water using HPLC-ESI-IT/MS

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

J. M. Bosle¹, S. Mischel², D. Scholz² und T. Hoffmann¹

¹Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University Mainz, Germany Institute for Geoscience, Johannes Gutenberg-University Mainz, Germany $(\boxtimes bosle@uni-mainz.de)$

Introduction

Cave drip water, speleothems and the proxies preserved within them have significant potential to record palaeoenvironmental changes in the regional vegetation^[1]. The use of stalagmites provides valuable information because they form a chemically closed system which does not change much after lithification, they grow continously^[2] and are amenable to precise ²³⁰Th/Udating^[3]. The most common proxies measured in speleothems are inorganic proxies, in particular carbon and oxygen isotopes, but recently the more importance of organic

matter analyses in this field is examined.

This study focuses on the research of lipid biomarkers. The lipids contained in stalagmites originate from overlying soil and the different plants, bacteria and fungi. Therefore different compositions of lipids may records provide of environmental changes^[4].

Table 1: Used fatty acid standards.

Common name	Structure	Abbr.
Lauric acid	CH ₃ (CH ₂) ₁₀ COOH	C12
Myristic acid	CH ₃ (CH ₂) ₁₂ COOH	C14
Palmitic acid	CH ₃ (CH ₂) ₁₄ COOH	C16
Stearic acid	CH ₃ (CH ₂) ₁₆ COOH	C18
Arachidic acid	CH ₃ (CH ₂) ₁₈ COOH	C20

Table 2: Parameters used during measurement HPLC

C	Agilent 1100 Series

Experimental

Stalagmite samples \rightarrow precleaning with DCM/MeOH (9:1) \rightarrow dissolving in 4M HCl \rightarrow ACN was added as a modifier \rightarrow solid phase extraction (SPE):

In the following a new method for the extraction of fatty acids (saturated) from stalagmites and cave drip and their water measurement by HPLC-ESI-IT/MS is presented.

Column	Varian Pursuit XRs 3 C8 50x2 mm temperature: 50 °C			
Gradient	0 min ACN/H ₂ 0 80% / 20% 5 min ACN/H ₂ 0 99% / 1% 25 min ACN/H ₂ 0 99% / 1% 26 min ACN/H ₂ 0 80% / 20%			
low rate	200 µL min⁻¹			
Detector	Bruker HCT+ (ESI-IT/MS)			
Polarity	negativ			
Mode	MRM (multiple reactions monitorin			

m/z: 199, 227, 255, 283, 311

Drip water samples \rightarrow ACN + 0,4M HCl was added \rightarrow SPE

Results

100 -

Table 3: Calibration data including SPE procedure.

	C12	C14	C16	C18	C20
Slope	4.37E+04	1.40E+05	5.65E+05	1.36E+05	1.10E+05
Intercept	6.36E+04	1.36E+06	1.47E+08	2.81E+07	6.63E+05
R^2	0.9979	0.9873	0.9946	0.9136	0.9948
RSD/%	0.9-1.4	0.1-6	1.1-2	3-8.6	0.1-3.4
LOD/ng	1.23	0.77	3.81	55.97	2.54
LOQ/ng	4.08	2.57	12.69	186.56	8.48

- Method developement and validation was performed using \bullet liquid-liquid extraction (LLE) and SPE.
- LLE showed matrix interferences and was not suitable for actual samples.
- Calibration data and linear regression plots of the optimized method were obtained performing spiking experiments. Results are listed in Table 3.
- Recovery of the extraction procedure was determined and ranged from 30% (C20) to 103% (C14).
- First applications to stalagmite samples (Figure 1) and cave drip water (Figure 2) were performed and correlated to $\delta^{13}C$ measurements (Table 4).

Figure 2: Fatty acid concentrations in cave drip water samples of dripping sites T1, T2, T5 and pool water, Herbstlabyrinth- Adventhöhle cave system.

Figure 1: Fatty acid record of NG01, Herbstlabyrinth- Adventhöhle cave system.

Table 4: Correlation coefficients of drip water measurements.

	δ ¹³ C			
	T1	T5	T2	PW
C12	-0.60	-0.90	NA	NA
C14	-0.45	-0.82	NA	NA
C16	-0.52	NA	NA	NA
C18	-0.46	-0.67	NA	NA

C20 0.50 0.79 NA NA

Figure 3: C12, C14 and C20 concentrations of dripping site T1 plotted against corresponding δ^{13} C values.

Outlook

- Application to further cave drip water and stalagmite samples and correlation with measurements of isotopes and inorganic trace elements.
- Identification of other organic compounds in speleothems using high-resolution MS (Orbitrap) and online measurements using FAPA-MS.

JGU

[1] A. J. Blyth et al., Quat. Sci. Rev., 2008, 27, 905-921. [2] A. I. Rushdi et al., Env. Earth Sciences, 2011, 62, 1245-1261. [3] D. A. Richards & J. A. Dorale, Rev. Mineral Geochem., 2003, 52,407–460. [4] A. J. Blyth et al., Org. Geochem., 2006, 37, 882-890.

